{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE CPP, MagicHash, UnboxedTuples, NoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
#include "MachDeps.h"
module GHC.Float.RealFracMethods
    ( 
      
      properFractionDoubleInteger
    , truncateDoubleInteger
    , floorDoubleInteger
    , ceilingDoubleInteger
    , roundDoubleInteger
      
    , properFractionDoubleInt
    , floorDoubleInt
    , ceilingDoubleInt
    , roundDoubleInt
      
    , double2Int
    , int2Double
      
      
    , properFractionFloatInteger
    , truncateFloatInteger
    , floorFloatInteger
    , ceilingFloatInteger
    , roundFloatInteger
      
    , properFractionFloatInt
    , floorFloatInt
    , ceilingFloatInt
    , roundFloatInt
      
    , float2Int
    , int2Float
    ) where
import GHC.Integer
import GHC.Base
import GHC.Num ()
#if WORD_SIZE_IN_BITS < 64
import GHC.IntWord64
#define TO64 integerToInt64
#define FROM64 int64ToInteger
#define MINUS64 minusInt64#
#define NEGATE64 negateInt64#
#else
#define TO64 integerToInt
#define FROM64 smallInteger
#define MINUS64 ( -# )
#define NEGATE64 negateInt#
uncheckedIShiftRA64# :: Int# -> Int# -> Int#
uncheckedIShiftRA64# = uncheckedIShiftRA#
uncheckedIShiftL64# :: Int# -> Int# -> Int#
uncheckedIShiftL64# = uncheckedIShiftL#
#endif
default ()
properFractionFloatInt :: Float -> (Int, Float)
properFractionFloatInt (F# x) =
    if isTrue# (x `eqFloat#` 0.0#)
        then (I# 0#, F# 0.0#)
        else case float2Int# x of
                n -> (I# n, F# (x `minusFloat#` int2Float# n))
floorFloatInt :: Float -> Int
floorFloatInt (F# x) =
    case float2Int# x of
      n | isTrue# (x `ltFloat#` int2Float# n) -> I# (n -# 1#)
        | otherwise                           -> I# n
ceilingFloatInt :: Float -> Int
ceilingFloatInt (F# x) =
    case float2Int# x of
      n | isTrue# (int2Float# n `ltFloat#` x) -> I# (n +# 1#)
        | otherwise                           -> I# n
roundFloatInt :: Float -> Int
roundFloatInt x = float2Int (c_rintFloat x)
{-# INLINE properFractionFloatInteger #-}
properFractionFloatInteger :: Float -> (Integer, Float)
properFractionFloatInteger v@(F# x) =
    case decodeFloat_Int# x of
      (# m, e #)
        | isTrue# (e <# 0#) ->
          case negateInt# e of
            s | isTrue# (s ># 23#) -> (0, v)
              | isTrue# (m <#  0#) ->
                case negateInt# (negateInt# m `uncheckedIShiftRA#` s) of
                  k -> (smallInteger k,
                            case m -# (k `uncheckedIShiftL#` s) of
                              r -> F# (encodeFloatInteger (smallInteger r) e))
              | otherwise           ->
                case m `uncheckedIShiftRL#` s of
                  k -> (smallInteger k,
                            case m -# (k `uncheckedIShiftL#` s) of
                              r -> F# (encodeFloatInteger (smallInteger r) e))
        | otherwise -> (shiftLInteger (smallInteger m) e, F# 0.0#)
{-# INLINE truncateFloatInteger #-}
truncateFloatInteger :: Float -> Integer
truncateFloatInteger x =
    case properFractionFloatInteger x of
      (n, _) -> n
{-# INLINE floorFloatInteger #-}
floorFloatInteger :: Float -> Integer
floorFloatInteger (F# x) =
    case decodeFloat_Int# x of
      (# m, e #)
        | isTrue# (e <# 0#) ->
          case negateInt# e of
            s | isTrue# (s ># 23#) -> if isTrue# (m <# 0#) then (-1) else 0
              | otherwise          -> smallInteger (m `uncheckedIShiftRA#` s)
        | otherwise -> shiftLInteger (smallInteger m) e
{-# INLINE ceilingFloatInteger #-}
ceilingFloatInteger :: Float -> Integer
ceilingFloatInteger (F# x) =
    negateInteger (floorFloatInteger (F# (negateFloat# x)))
{-# INLINE roundFloatInteger #-}
roundFloatInteger :: Float -> Integer
roundFloatInteger x = float2Integer (c_rintFloat x)
properFractionDoubleInt :: Double -> (Int, Double)
properFractionDoubleInt (D# x) =
    if isTrue# (x ==## 0.0##)
        then (I# 0#, D# 0.0##)
        else case double2Int# x of
                n -> (I# n, D# (x -## int2Double# n))
floorDoubleInt :: Double -> Int
floorDoubleInt (D# x) =
    case double2Int# x of
      n | isTrue# (x <## int2Double# n) -> I# (n -# 1#)
        | otherwise                     -> I# n
ceilingDoubleInt :: Double -> Int
ceilingDoubleInt (D# x) =
    case double2Int# x of
      n | isTrue# (int2Double# n <## x) -> I# (n +# 1#)
        | otherwise                     -> I# n
roundDoubleInt :: Double -> Int
roundDoubleInt x = double2Int (c_rintDouble x)
{-# INLINE properFractionDoubleInteger #-}
properFractionDoubleInteger :: Double -> (Integer, Double)
properFractionDoubleInteger v@(D# x) =
    case decodeDoubleInteger x of
      (# m, e #)
        | isTrue# (e <# 0#) ->
          case negateInt# e of
            s | isTrue# (s ># 52#) -> (0, v)
              | m < 0                 ->
                case TO64 (negateInteger m) of
                  n ->
                    case n `uncheckedIShiftRA64#` s of
                      k ->
                        (FROM64 (NEGATE64 k),
                          case MINUS64 n (k `uncheckedIShiftL64#` s) of
                            r ->
                              D# (encodeDoubleInteger (FROM64 (NEGATE64 r)) e))
              | otherwise           ->
                case TO64 m of
                  n ->
                    case n `uncheckedIShiftRA64#` s of
                      k -> (FROM64 k,
                            case MINUS64 n (k `uncheckedIShiftL64#` s) of
                              r -> D# (encodeDoubleInteger (FROM64 r) e))
        | otherwise -> (shiftLInteger m e, D# 0.0##)
{-# INLINE truncateDoubleInteger #-}
truncateDoubleInteger :: Double -> Integer
truncateDoubleInteger x =
    case properFractionDoubleInteger x of
      (n, _) -> n
{-# INLINE floorDoubleInteger #-}
floorDoubleInteger :: Double -> Integer
floorDoubleInteger (D# x) =
    case decodeDoubleInteger x of
      (# m, e #)
        | isTrue# (e <# 0#) ->
          case negateInt# e of
            s | isTrue# (s ># 52#) -> if m < 0 then (-1) else 0
              | otherwise          ->
                case TO64 m of
                  n -> FROM64 (n `uncheckedIShiftRA64#` s)
        | otherwise -> shiftLInteger m e
{-# INLINE ceilingDoubleInteger #-}
ceilingDoubleInteger :: Double -> Integer
ceilingDoubleInteger (D# x) =
    negateInteger (floorDoubleInteger (D# (negateDouble# x)))
{-# INLINE roundDoubleInteger #-}
roundDoubleInteger :: Double -> Integer
roundDoubleInteger x = double2Integer (c_rintDouble x)
double2Int :: Double -> Int
double2Int (D# x) = I# (double2Int# x)
int2Double :: Int -> Double
int2Double (I# i) = D# (int2Double# i)
float2Int :: Float -> Int
float2Int (F# x) = I# (float2Int# x)
int2Float :: Int -> Float
int2Float (I# i) = F# (int2Float# i)
{-# INLINE double2Integer #-}
double2Integer :: Double -> Integer
double2Integer (D# x) =
    case decodeDoubleInteger x of
      (# m, e #)
        | isTrue# (e <# 0#) ->
          case TO64 m of
            n -> FROM64 (n `uncheckedIShiftRA64#` negateInt# e)
        | otherwise -> shiftLInteger m e
{-# INLINE float2Integer #-}
float2Integer :: Float -> Integer
float2Integer (F# x) =
    case decodeFloat_Int# x of
      (# m, e #)
        | isTrue# (e <# 0#) -> smallInteger (m `uncheckedIShiftRA#` negateInt# e)
        | otherwise         -> shiftLInteger (smallInteger m) e
foreign import ccall unsafe "rintDouble"
    c_rintDouble :: Double -> Double
foreign import ccall unsafe "rintFloat"
    c_rintFloat :: Float -> Float