{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
module GHC.Natural
(
Natural(..)
, mkNatural
, isValidNatural
, plusNatural
, minusNatural
, minusNaturalMaybe
, timesNatural
, negateNatural
, signumNatural
, quotRemNatural
, quotNatural
, remNatural
#if defined(MIN_VERSION_integer_gmp)
, gcdNatural
, lcmNatural
#endif
, andNatural
, orNatural
, xorNatural
, bitNatural
, testBitNatural
#if defined(MIN_VERSION_integer_gmp)
, popCountNatural
#endif
, shiftLNatural
, shiftRNatural
, naturalToInteger
, naturalToWord
, naturalToInt
, naturalFromInteger
, wordToNatural
, intToNatural
, naturalToWordMaybe
, wordToNatural#
, wordToNaturalBase
, powModNatural
) where
#include "MachDeps.h"
import GHC.Classes
import GHC.Maybe
import GHC.Types
import GHC.Prim
import {-# SOURCE #-} GHC.Exception.Type (underflowException, divZeroException)
#if defined(MIN_VERSION_integer_gmp)
import GHC.Integer.GMP.Internals
#else
import GHC.Integer
#endif
default ()
#define CONSTANT_FOLDED NOINLINE
{-# NOINLINE underflowError #-}
underflowError :: a
underflowError = raise# underflowException
{-# NOINLINE divZeroError #-}
divZeroError :: a
divZeroError = raise# divZeroException
#if defined(MIN_VERSION_integer_gmp)
data Natural = NatS# GmpLimb#
| NatJ# {-# UNPACK #-} !BigNat
deriving ( Eq
, Ord
)
isValidNatural :: Natural -> Bool
isValidNatural (NatS# _) = True
isValidNatural (NatJ# bn) = isTrue# (isValidBigNat# bn)
&& isTrue# (sizeofBigNat# bn ># 0#)
signumNatural :: Natural -> Natural
signumNatural (NatS# 0##) = NatS# 0##
signumNatural _ = NatS# 1##
negateNatural :: Natural -> Natural
negateNatural (NatS# 0##) = NatS# 0##
negateNatural _ = underflowError
naturalFromInteger :: Integer -> Natural
naturalFromInteger (S# i#)
| isTrue# (i# >=# 0#) = NatS# (int2Word# i#)
naturalFromInteger (Jp# bn) = bigNatToNatural bn
naturalFromInteger _ = underflowError
{-# CONSTANT_FOLDED naturalFromInteger #-}
gcdNatural :: Natural -> Natural -> Natural
gcdNatural (NatS# 0##) y = y
gcdNatural x (NatS# 0##) = x
gcdNatural (NatS# 1##) _ = NatS# 1##
gcdNatural _ (NatS# 1##) = NatS# 1##
gcdNatural (NatJ# x) (NatJ# y) = bigNatToNatural (gcdBigNat x y)
gcdNatural (NatJ# x) (NatS# y) = NatS# (gcdBigNatWord x y)
gcdNatural (NatS# x) (NatJ# y) = NatS# (gcdBigNatWord y x)
gcdNatural (NatS# x) (NatS# y) = NatS# (gcdWord x y)
lcmNatural :: Natural -> Natural -> Natural
lcmNatural (NatS# 0##) _ = NatS# 0##
lcmNatural _ (NatS# 0##) = NatS# 0##
lcmNatural (NatS# 1##) y = y
lcmNatural x (NatS# 1##) = x
lcmNatural x y = (x `quotNatural` (gcdNatural x y)) `timesNatural` y
quotRemNatural :: Natural -> Natural -> (Natural, Natural)
quotRemNatural _ (NatS# 0##) = divZeroError
quotRemNatural n (NatS# 1##) = (n,NatS# 0##)
quotRemNatural n@(NatS# _) (NatJ# _) = (NatS# 0##, n)
quotRemNatural (NatS# n) (NatS# d) = case quotRemWord# n d of
(# q, r #) -> (NatS# q, NatS# r)
quotRemNatural (NatJ# n) (NatS# d) = case quotRemBigNatWord n d of
(# q, r #) -> (bigNatToNatural q, NatS# r)
quotRemNatural (NatJ# n) (NatJ# d) = case quotRemBigNat n d of
(# q, r #) -> (bigNatToNatural q, bigNatToNatural r)
quotNatural :: Natural -> Natural -> Natural
quotNatural _ (NatS# 0##) = divZeroError
quotNatural n (NatS# 1##) = n
quotNatural (NatS# _) (NatJ# _) = NatS# 0##
quotNatural (NatS# n) (NatS# d) = NatS# (quotWord# n d)
quotNatural (NatJ# n) (NatS# d) = bigNatToNatural (quotBigNatWord n d)
quotNatural (NatJ# n) (NatJ# d) = bigNatToNatural (quotBigNat n d)
remNatural :: Natural -> Natural -> Natural
remNatural _ (NatS# 0##) = divZeroError
remNatural _ (NatS# 1##) = NatS# 0##
remNatural n@(NatS# _) (NatJ# _) = n
remNatural (NatS# n) (NatS# d) = NatS# (remWord# n d)
remNatural (NatJ# n) (NatS# d) = NatS# (remBigNatWord n d)
remNatural (NatJ# n) (NatJ# d) = bigNatToNatural (remBigNat n d)
naturalToInteger :: Natural -> Integer
naturalToInteger (NatS# w) = wordToInteger w
naturalToInteger (NatJ# bn) = Jp# bn
{-# CONSTANT_FOLDED naturalToInteger #-}
andNatural :: Natural -> Natural -> Natural
andNatural (NatS# n) (NatS# m) = NatS# (n `and#` m)
andNatural (NatS# n) (NatJ# m) = NatS# (n `and#` bigNatToWord m)
andNatural (NatJ# n) (NatS# m) = NatS# (bigNatToWord n `and#` m)
andNatural (NatJ# n) (NatJ# m) = bigNatToNatural (andBigNat n m)
orNatural :: Natural -> Natural -> Natural
orNatural (NatS# n) (NatS# m) = NatS# (n `or#` m)
orNatural (NatS# n) (NatJ# m) = NatJ# (orBigNat (wordToBigNat n) m)
orNatural (NatJ# n) (NatS# m) = NatJ# (orBigNat n (wordToBigNat m))
orNatural (NatJ# n) (NatJ# m) = NatJ# (orBigNat n m)
xorNatural :: Natural -> Natural -> Natural
xorNatural (NatS# n) (NatS# m) = NatS# (n `xor#` m)
xorNatural (NatS# n) (NatJ# m) = NatJ# (xorBigNat (wordToBigNat n) m)
xorNatural (NatJ# n) (NatS# m) = NatJ# (xorBigNat n (wordToBigNat m))
xorNatural (NatJ# n) (NatJ# m) = bigNatToNatural (xorBigNat n m)
bitNatural :: Int# -> Natural
bitNatural i#
| isTrue# (i# <# WORD_SIZE_IN_BITS#) = NatS# (1## `uncheckedShiftL#` i#)
| True = NatJ# (bitBigNat i#)
testBitNatural :: Natural -> Int -> Bool
testBitNatural (NatS# w) (I# i#)
| isTrue# (i# <# WORD_SIZE_IN_BITS#) =
isTrue# ((w `and#` (1## `uncheckedShiftL#` i#)) `neWord#` 0##)
| True = False
testBitNatural (NatJ# bn) (I# i#) = testBitBigNat bn i#
popCountNatural :: Natural -> Int
popCountNatural (NatS# w) = I# (word2Int# (popCnt# w))
popCountNatural (NatJ# bn) = I# (popCountBigNat bn)
shiftLNatural :: Natural -> Int -> Natural
shiftLNatural n (I# 0#) = n
shiftLNatural (NatS# 0##) _ = NatS# 0##
shiftLNatural (NatS# 1##) (I# i#) = bitNatural i#
shiftLNatural (NatS# w) (I# i#)
= bigNatToNatural (shiftLBigNat (wordToBigNat w) i#)
shiftLNatural (NatJ# bn) (I# i#)
= bigNatToNatural (shiftLBigNat bn i#)
shiftRNatural :: Natural -> Int -> Natural
shiftRNatural n (I# 0#) = n
shiftRNatural (NatS# w) (I# i#)
| isTrue# (i# >=# WORD_SIZE_IN_BITS#) = NatS# 0##
| True = NatS# (w `uncheckedShiftRL#` i#)
shiftRNatural (NatJ# bn) (I# i#) = bigNatToNatural (shiftRBigNat bn i#)
plusNatural :: Natural -> Natural -> Natural
plusNatural (NatS# 0##) y = y
plusNatural x (NatS# 0##) = x
plusNatural (NatS# x) (NatS# y)
= case plusWord2# x y of
(# 0##, l #) -> NatS# l
(# h, l #) -> NatJ# (wordToBigNat2 h l)
plusNatural (NatS# x) (NatJ# y) = NatJ# (plusBigNatWord y x)
plusNatural (NatJ# x) (NatS# y) = NatJ# (plusBigNatWord x y)
plusNatural (NatJ# x) (NatJ# y) = NatJ# (plusBigNat x y)
{-# CONSTANT_FOLDED plusNatural #-}
timesNatural :: Natural -> Natural -> Natural
timesNatural _ (NatS# 0##) = NatS# 0##
timesNatural (NatS# 0##) _ = NatS# 0##
timesNatural x (NatS# 1##) = x
timesNatural (NatS# 1##) y = y
timesNatural (NatS# x) (NatS# y) = case timesWord2# x y of
(# 0##, 0## #) -> NatS# 0##
(# 0##, xy #) -> NatS# xy
(# h , l #) -> NatJ# (wordToBigNat2 h l)
timesNatural (NatS# x) (NatJ# y) = NatJ# (timesBigNatWord y x)
timesNatural (NatJ# x) (NatS# y) = NatJ# (timesBigNatWord x y)
timesNatural (NatJ# x) (NatJ# y) = NatJ# (timesBigNat x y)
{-# CONSTANT_FOLDED timesNatural #-}
minusNatural :: Natural -> Natural -> Natural
minusNatural x (NatS# 0##) = x
minusNatural (NatS# x) (NatS# y) = case subWordC# x y of
(# l, 0# #) -> NatS# l
_ -> underflowError
minusNatural (NatS# _) (NatJ# _) = underflowError
minusNatural (NatJ# x) (NatS# y)
= bigNatToNatural (minusBigNatWord x y)
minusNatural (NatJ# x) (NatJ# y)
= bigNatToNatural (minusBigNat x y)
{-# CONSTANT_FOLDED minusNatural #-}
minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
minusNaturalMaybe x (NatS# 0##) = Just x
minusNaturalMaybe (NatS# x) (NatS# y) = case subWordC# x y of
(# l, 0# #) -> Just (NatS# l)
_ -> Nothing
minusNaturalMaybe (NatS# _) (NatJ# _) = Nothing
minusNaturalMaybe (NatJ# x) (NatS# y)
= Just (bigNatToNatural (minusBigNatWord x y))
minusNaturalMaybe (NatJ# x) (NatJ# y)
| isTrue# (isNullBigNat# res) = Nothing
| True = Just (bigNatToNatural res)
where
res = minusBigNat x y
bigNatToNatural :: BigNat -> Natural
bigNatToNatural bn
| isTrue# (sizeofBigNat# bn ==# 1#) = NatS# (bigNatToWord bn)
| isTrue# (isNullBigNat# bn) = underflowError
| True = NatJ# bn
naturalToBigNat :: Natural -> BigNat
naturalToBigNat (NatS# w#) = wordToBigNat w#
naturalToBigNat (NatJ# bn) = bn
naturalToWord :: Natural -> Word
naturalToWord (NatS# w#) = W# w#
naturalToWord (NatJ# bn) = W# (bigNatToWord bn)
naturalToInt :: Natural -> Int
naturalToInt (NatS# w#) = I# (word2Int# w#)
naturalToInt (NatJ# bn) = I# (bigNatToInt bn)
wordToNatural# :: Word# -> Natural
wordToNatural# w# = NatS# w#
{-# CONSTANT_FOLDED wordToNatural# #-}
wordToNaturalBase :: Word# -> Natural
wordToNaturalBase w# = NatS# w#
#else /* !defined(MIN_VERSION_integer_gmp) */
newtype Natural = Natural Integer
deriving (Eq,Ord)
isValidNatural :: Natural -> Bool
isValidNatural (Natural i) = i >= wordToInteger 0##
wordToNatural# :: Word# -> Natural
wordToNatural# w## = Natural (wordToInteger w##)
{-# CONSTANT_FOLDED wordToNatural# #-}
wordToNaturalBase :: Word# -> Natural
wordToNaturalBase w## = Natural (wordToInteger w##)
naturalFromInteger :: Integer -> Natural
naturalFromInteger n
| n >= wordToInteger 0## = Natural n
| True = underflowError
{-# INLINE naturalFromInteger #-}
minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
minusNaturalMaybe (Natural x) (Natural y)
| x >= y = Just (Natural (x `minusInteger` y))
| True = Nothing
shiftLNatural :: Natural -> Int -> Natural
shiftLNatural (Natural n) (I# i) = Natural (n `shiftLInteger` i)
shiftRNatural :: Natural -> Int -> Natural
shiftRNatural (Natural n) (I# i) = Natural (n `shiftRInteger` i)
plusNatural :: Natural -> Natural -> Natural
plusNatural (Natural x) (Natural y) = Natural (x `plusInteger` y)
{-# CONSTANT_FOLDED plusNatural #-}
minusNatural :: Natural -> Natural -> Natural
minusNatural (Natural x) (Natural y) = Natural (x `minusInteger` y)
{-# CONSTANT_FOLDED minusNatural #-}
timesNatural :: Natural -> Natural -> Natural
timesNatural (Natural x) (Natural y) = Natural (x `timesInteger` y)
{-# CONSTANT_FOLDED timesNatural #-}
orNatural :: Natural -> Natural -> Natural
orNatural (Natural x) (Natural y) = Natural (x `orInteger` y)
xorNatural :: Natural -> Natural -> Natural
xorNatural (Natural x) (Natural y) = Natural (x `xorInteger` y)
andNatural :: Natural -> Natural -> Natural
andNatural (Natural x) (Natural y) = Natural (x `andInteger` y)
naturalToInt :: Natural -> Int
naturalToInt (Natural i) = I# (integerToInt i)
naturalToWord :: Natural -> Word
naturalToWord (Natural i) = W# (integerToWord i)
naturalToInteger :: Natural -> Integer
naturalToInteger (Natural i) = i
{-# CONSTANT_FOLDED naturalToInteger #-}
testBitNatural :: Natural -> Int -> Bool
testBitNatural (Natural n) (I# i) = testBitInteger n i
bitNatural :: Int# -> Natural
bitNatural i#
| isTrue# (i# <# WORD_SIZE_IN_BITS#) = wordToNaturalBase (1## `uncheckedShiftL#` i#)
| True = Natural (1 `shiftLInteger` i#)
quotNatural :: Natural -> Natural -> Natural
quotNatural n@(Natural x) (Natural y)
| y == wordToInteger 0## = divZeroError
| y == wordToInteger 1## = n
| True = Natural (x `quotInteger` y)
remNatural :: Natural -> Natural -> Natural
remNatural (Natural x) (Natural y)
| y == wordToInteger 0## = divZeroError
| y == wordToInteger 1## = wordToNaturalBase 0##
| True = Natural (x `remInteger` y)
quotRemNatural :: Natural -> Natural -> (Natural, Natural)
quotRemNatural n@(Natural x) (Natural y)
| y == wordToInteger 0## = divZeroError
| y == wordToInteger 1## = (n,wordToNaturalBase 0##)
| True = case quotRemInteger x y of
(# k, r #) -> (Natural k, Natural r)
signumNatural :: Natural -> Natural
signumNatural (Natural x)
| x == wordToInteger 0## = wordToNaturalBase 0##
| True = wordToNaturalBase 1##
negateNatural :: Natural -> Natural
negateNatural (Natural x)
| x == wordToInteger 0## = wordToNaturalBase 0##
| True = underflowError
#endif
wordToNatural :: Word -> Natural
wordToNatural (W# w#) = wordToNatural# w#
naturalToWordMaybe :: Natural -> Maybe Word
#if defined(MIN_VERSION_integer_gmp)
naturalToWordMaybe (NatS# w#) = Just (W# w#)
naturalToWordMaybe (NatJ# _) = Nothing
#else
naturalToWordMaybe (Natural i)
| i < maxw = Just (W# (integerToWord i))
| True = Nothing
where
maxw = 1 `shiftLInteger` WORD_SIZE_IN_BITS#
#endif
powModNatural :: Natural -> Natural -> Natural -> Natural
#if defined(MIN_VERSION_integer_gmp)
powModNatural _ _ (NatS# 0##) = divZeroError
powModNatural _ _ (NatS# 1##) = NatS# 0##
powModNatural _ (NatS# 0##) _ = NatS# 1##
powModNatural (NatS# 0##) _ _ = NatS# 0##
powModNatural (NatS# 1##) _ _ = NatS# 1##
powModNatural (NatS# b) (NatS# e) (NatS# m) = NatS# (powModWord b e m)
powModNatural b e (NatS# m)
= NatS# (powModBigNatWord (naturalToBigNat b) (naturalToBigNat e) m)
powModNatural b e (NatJ# m)
= bigNatToNatural (powModBigNat (naturalToBigNat b) (naturalToBigNat e) m)
#else
powModNatural (Natural b0) (Natural e0) (Natural m)
| m == wordToInteger 0## = divZeroError
| m == wordToInteger 1## = wordToNaturalBase 0##
| e0 == wordToInteger 0## = wordToNaturalBase 1##
| b0 == wordToInteger 0## = wordToNaturalBase 0##
| b0 == wordToInteger 1## = wordToNaturalBase 1##
| True = go b0 e0 (wordToInteger 1##)
where
go !b e !r
| e `testBitInteger` 0# = go b' e' ((r `timesInteger` b) `modInteger` m)
| e == wordToInteger 0## = naturalFromInteger r
| True = go b' e' r
where
b' = (b `timesInteger` b) `modInteger` m
e' = e `shiftRInteger` 1#
#endif
mkNatural :: [Word]
-> Natural
mkNatural [] = wordToNaturalBase 0##
mkNatural (W# i : is') = wordToNaturalBase (i `and#` 0xffffffff##) `orNatural`
shiftLNatural (mkNatural is') 32
{-# CONSTANT_FOLDED mkNatural #-}
intToNatural :: Int -> Natural
intToNatural (I# i#)
| isTrue# (i# <# 0#) = underflowError
| True = wordToNaturalBase (int2Word# i#)