module Language.Haskell.TH.Lib (
InfoQ, ExpQ, TExpQ, DecQ, DecsQ, ConQ, TypeQ, KindQ, TyVarBndrQ,
TyLitQ, CxtQ, PredQ, DerivClauseQ, MatchQ, ClauseQ, BodyQ, GuardQ,
StmtQ, RangeQ, SourceStrictnessQ, SourceUnpackednessQ, BangQ,
BangTypeQ, VarBangTypeQ, StrictTypeQ, VarStrictTypeQ, FieldExpQ, PatQ,
FieldPatQ, RuleBndrQ, TySynEqnQ, PatSynDirQ, PatSynArgsQ,
FamilyResultSigQ, DerivStrategyQ,
intPrimL, wordPrimL, floatPrimL, doublePrimL, integerL, rationalL,
charL, stringL, stringPrimL, charPrimL,
litP, varP, tupP, unboxedTupP, unboxedSumP, conP, uInfixP, parensP,
infixP, tildeP, bangP, asP, wildP, recP,
listP, sigP, viewP,
fieldPat,
normalB, guardedB, normalG, normalGE, patG, patGE, match, clause,
dyn, varE, unboundVarE, labelE, implicitParamVarE, conE, litE, staticE,
appE, appTypeE, uInfixE, parensE, infixE, infixApp, sectionL, sectionR,
lamE, lam1E, lamCaseE, tupE, unboxedTupE, unboxedSumE, condE, multiIfE,
letE, caseE, appsE, listE, sigE, recConE, recUpdE, stringE, fieldExp,
fromE, fromThenE, fromToE, fromThenToE,
arithSeqE,
fromR, fromThenR, fromToR, fromThenToR,
doE, mdoE, compE,
bindS, letS, noBindS, parS, recS,
forallT, varT, conT, appT, arrowT, infixT, uInfixT, parensT, equalityT,
listT, tupleT, unboxedTupleT, unboxedSumT, sigT, litT, wildCardT,
promotedT, promotedTupleT, promotedNilT, promotedConsT, implicitParamT,
numTyLit, strTyLit,
noSourceUnpackedness, sourceNoUnpack, sourceUnpack,
noSourceStrictness, sourceLazy, sourceStrict,
isStrict, notStrict, unpacked,
bang, bangType, varBangType, strictType, varStrictType,
cxt, classP, equalP,
normalC, recC, infixC, forallC, gadtC, recGadtC,
varK, conK, tupleK, arrowK, listK, appK, starK, constraintK,
plainTV, kindedTV,
nominalR, representationalR, phantomR, inferR,
valD, funD, tySynD, dataD, newtypeD,
derivClause, DerivClause(..),
stockStrategy, anyclassStrategy, newtypeStrategy,
viaStrategy, DerivStrategy(..),
classD, instanceD, instanceWithOverlapD, Overlap(..),
sigD, standaloneDerivD, standaloneDerivWithStrategyD, defaultSigD,
roleAnnotD,
dataFamilyD, openTypeFamilyD, closedTypeFamilyD, dataInstD,
newtypeInstD, tySynInstD,
tySynEqn, injectivityAnn, noSig, kindSig, tyVarSig,
infixLD, infixRD, infixND,
cCall, stdCall, cApi, prim, javaScript,
unsafe, safe, interruptible, forImpD,
funDep,
ruleVar, typedRuleVar,
valueAnnotation, typeAnnotation, moduleAnnotation,
pragInlD, pragSpecD, pragSpecInlD, pragSpecInstD, pragRuleD, pragAnnD,
pragLineD, pragCompleteD,
patSynD, patSynSigD, unidir, implBidir, explBidir, prefixPatSyn,
infixPatSyn, recordPatSyn,
implicitParamBindD,
thisModule
) where
import Language.Haskell.TH.Lib.Internal hiding
( tySynD
, dataD
, newtypeD
, classD
, pragRuleD
, dataInstD
, newtypeInstD
, dataFamilyD
, openTypeFamilyD
, closedTypeFamilyD
, tySynEqn
, forallC
, forallT
, sigT
, plainTV
, kindedTV
, starK
, constraintK
, noSig
, kindSig
, tyVarSig
, derivClause
, standaloneDerivWithStrategyD
, Role
, InjectivityAnn
)
import Language.Haskell.TH.Syntax
import Control.Monad (liftM2)
import Prelude
tySynD :: Name -> [TyVarBndr] -> TypeQ -> DecQ
tySynD tc tvs rhs = do { rhs1 <- rhs; return (TySynD tc tvs rhs1) }
dataD :: CxtQ -> Name -> [TyVarBndr] -> Maybe Kind -> [ConQ] -> [DerivClauseQ]
-> DecQ
dataD ctxt tc tvs ksig cons derivs =
do
ctxt1 <- ctxt
cons1 <- sequence cons
derivs1 <- sequence derivs
return (DataD ctxt1 tc tvs ksig cons1 derivs1)
newtypeD :: CxtQ -> Name -> [TyVarBndr] -> Maybe Kind -> ConQ -> [DerivClauseQ]
-> DecQ
newtypeD ctxt tc tvs ksig con derivs =
do
ctxt1 <- ctxt
con1 <- con
derivs1 <- sequence derivs
return (NewtypeD ctxt1 tc tvs ksig con1 derivs1)
classD :: CxtQ -> Name -> [TyVarBndr] -> [FunDep] -> [DecQ] -> DecQ
classD ctxt cls tvs fds decs =
do
decs1 <- sequence decs
ctxt1 <- ctxt
return $ ClassD ctxt1 cls tvs fds decs1
pragRuleD :: String -> [RuleBndrQ] -> ExpQ -> ExpQ -> Phases -> DecQ
pragRuleD n bndrs lhs rhs phases
= do
bndrs1 <- sequence bndrs
lhs1 <- lhs
rhs1 <- rhs
return $ PragmaD $ RuleP n Nothing bndrs1 lhs1 rhs1 phases
dataInstD :: CxtQ -> Name -> [TypeQ] -> Maybe Kind -> [ConQ] -> [DerivClauseQ]
-> DecQ
dataInstD ctxt tc tys ksig cons derivs =
do
ctxt1 <- ctxt
tys1 <- sequence tys
cons1 <- sequence cons
derivs1 <- sequence derivs
return (DataInstD ctxt1 tc Nothing tys1 ksig cons1 derivs1)
newtypeInstD :: CxtQ -> Name -> [TypeQ] -> Maybe Kind -> ConQ -> [DerivClauseQ]
-> DecQ
newtypeInstD ctxt tc tys ksig con derivs =
do
ctxt1 <- ctxt
tys1 <- sequence tys
con1 <- con
derivs1 <- sequence derivs
return (NewtypeInstD ctxt1 tc Nothing tys1 ksig con1 derivs1)
dataFamilyD :: Name -> [TyVarBndr] -> Maybe Kind -> DecQ
dataFamilyD tc tvs kind
= return $ DataFamilyD tc tvs kind
openTypeFamilyD :: Name -> [TyVarBndr] -> FamilyResultSig
-> Maybe InjectivityAnn -> DecQ
openTypeFamilyD tc tvs res inj
= return $ OpenTypeFamilyD (TypeFamilyHead tc tvs res inj)
closedTypeFamilyD :: Name -> [TyVarBndr] -> FamilyResultSig
-> Maybe InjectivityAnn -> [TySynEqnQ] -> DecQ
closedTypeFamilyD tc tvs result injectivity eqns =
do eqns1 <- sequence eqns
return (ClosedTypeFamilyD (TypeFamilyHead tc tvs result injectivity) eqns1)
tySynEqn :: [TypeQ] -> TypeQ -> TySynEqnQ
tySynEqn lhs rhs =
do
lhs1 <- sequence lhs
rhs1 <- rhs
return (TySynEqn Nothing lhs1 rhs1)
forallC :: [TyVarBndr] -> CxtQ -> ConQ -> ConQ
forallC ns ctxt con = liftM2 (ForallC ns) ctxt con
forallT :: [TyVarBndr] -> CxtQ -> TypeQ -> TypeQ
forallT tvars ctxt ty = do
ctxt1 <- ctxt
ty1 <- ty
return $ ForallT tvars ctxt1 ty1
sigT :: TypeQ -> Kind -> TypeQ
sigT t k
= do
t' <- t
return $ SigT t' k
plainTV :: Name -> TyVarBndr
plainTV = PlainTV
kindedTV :: Name -> Kind -> TyVarBndr
kindedTV = KindedTV
starK :: Kind
starK = StarT
constraintK :: Kind
constraintK = ConstraintT
noSig :: FamilyResultSig
noSig = NoSig
kindSig :: Kind -> FamilyResultSig
kindSig = KindSig
tyVarSig :: TyVarBndr -> FamilyResultSig
tyVarSig = TyVarSig
derivClause :: Maybe DerivStrategy -> [PredQ] -> DerivClauseQ
derivClause mds p = do
p' <- cxt p
return $ DerivClause mds p'
standaloneDerivWithStrategyD :: Maybe DerivStrategy -> CxtQ -> TypeQ -> DecQ
standaloneDerivWithStrategyD mds ctxt ty = do
ctxt' <- ctxt
ty' <- ty
return $ StandaloneDerivD mds ctxt' ty'